
Fundamentals of R Programming Unit – II

O.S. ABDUL QADIR M. IBRAMSHA

0

Fundamentals of R Programming

Contents

Hours Chapter Page No.

UNIT – I

1 Introduction 2

2
Evolution of R 2

Features of R 2

3

Environment Setup

 Windows Installation

 Linux Installation

2

4

4

Basic Syntax

 R Command Prompt

 R Script File

5

6

5
Comments 6

Revision

UNIT – II

6

7

Datatypes

1. Vectors

2. Lists

3. Matrices

4. Arrays

5. Factors

6. Data Frames

8

8

8

8

9

10

8

Variables

 Variable Assignment

 Data Type of a Variable

 Finding Variables

 Deleting Variables

10

11

11

12

9

10

Operators

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Assignment Operators

5. Miscellaneous Operators

13

13

14

14

15

UNIT – III

11

12

Decision Making

1. if statement

2. if...else statement

3. The if...else if...else Statement

4. switch statement

16

17

18

19

13

14

15

Loops

1. repeat loop

2. while loop

3. for loop

20

21

22

Hours Chapter Page No.

16

Loop Control Statements

1. break statement

2. Next statement

23

24

UNIT – IV

17

18

19

Functions

Definition

Components

Built-in functions

User-defined functions

Calling a function

26

26

26

27

27

20

Strings

 Rules Applied in String Construction

 String Manipulation

29

30

21

22

Vector

Vector Creation

Accessing Vector Elements

Vector Manipulation

32

33

34

23

24

Lists

Creating a List

Naming List Elements

Accessing List Elements

Manipulating List Elements

Merging Lists

Converting List to Vector

35

36

36

37

38

38

UNIT – V

25

26

Matrices

Accessing Elements of a Matrix

Matrix Computations
 Matrix Addition & Subtraction

 Matrix Multiplication & Division

40

40

27

28

Arrays

Naming Columns and Rows

Accessing Array Elements

Manipulating Array Elements

Calculations Across Array Elements

42

43

43

44

29

30
Review Questions

Fundamentals of R Programming Unit – I

O.S. ABDUL QADIR M. IBRAMSHA

2

Introduction
 R is a programming language and software environment for statistical analysis, graphics

representation and reporting.

 This language was named R, based on 1ST letter of first name of the two authors

(Robert Gentleman and Ross Ihaka).

 R is freely available under the General Public License (GNU) and pre-compiled binary

versions are provided for operating systems (Linux, Windows and Mac).

 R is free software distributed under a GNU-style copy left, and an official part of

the GNU project called GNU S.

 R allows integration with the procedures written in the C, C++, .Net, Python or

FORTRAN languages for efficiency.

Evolution of R
 R is an interpreted programming language which was created by Ross Ihaka and

Robert Gentleman at the University of Auckland, New Zealand and is currently

developed by the R Development Core Team.

 R made its first appearance in 1993.

 A large group of individuals contributed to R by sending code and bug reports.

 Since mid-1997 there has been a core group (the "R Core Team") who can modify

the R source code archive.

Features of R

 R is a well-developed, simple and effective programming language which includes

conditionals, loops, user defined recursive functions and I facilities.

 R has an effective data handling and storage facility,

 R provides a suite of operators for calculations on arrays, lists, vectors and

matrices.

 R provides a large, coherent and integrated collection of tools for data analysis.

 R provides graphical facilities for data analysis and display either directly at the

computer or printing at the papers.

Environment Setup
1. Windows Installation

First, we have to download the R setup from

https://cloud.r-project.org/bin/windows/base/

Fundamentals of R Programming Unit – I

O.S. ABDUL QADIR M. IBRAMSHA

3

 When we click on Download, our downloading will be started of R setup.

Once it is finished, we have to run the setup of R in the following way:

 Select the path where we want to download and proceed to Next.

 Select all components which we want to install, and then we will

proceed to Next.

 In the next step, we have to select either customized startup or accept

the default, and then we proceed to Next.

 When we proceed to next, our installation of R in our system will get

started:

Fundamentals of R Programming Unit – I

O.S. ABDUL QADIR M. IBRAMSHA

4

 In the last, we will click on finish to successfully install R.

2. Linux Installation

 In the first step, we have to update all the required files in our system

using sudo apt-get update command as:

 In the second step, we will install R file in our system with the help of sudo

apt-get install r-base as:

Fundamentals of R Programming Unit – I

O.S. ABDUL QADIR M. IBRAMSHA

5

 In the last step, we type R and press enter to work on R editor.

R Basic Syntax
R Command Prompt

Once you have R environment setup, then it’s easy to start your R command prompt

by just typing the following command at your command prompt −

$ R

This will launch R interpreter and you will get a prompt > where you can start typing

your program as follows −

> myString <- "Hello, SAQ!"

> print (myString)

[1] "Hello, SAQ!"

 Here first statement defines a string variable myString, where we assign a string

"Hello, SAQ!" and then next statement print() is being used to print the value

stored in variable myString.

R Script File

Usually, you will do your programming by writing your programs in script files and

then you execute those scripts at your command prompt with the help of R interpreter

called Rscript. So let's start with writing following code in a text file called test.R as

under −

My first program in R Programming

myString <- "Hello, SAQ!"

print (myString)

Fundamentals of R Programming Unit – I

O.S. ABDUL QADIR M. IBRAMSHA

6

Save the above code in a file test.R and execute it at Linux command prompt as given

below. Even if you are using Windows or other system, syntax will remain same.

$ Rscript test.R

When we run the above program, it produces the following result.

[1] "Hello, SAQ!"

Comments
 Comments are like helping text in your R program and they are ignored by the

interpreter while executing your actual program.

 Single comment is written using # in the beginning of the statement as follows –

My first program in R Programming

 R does not support multi-line comments but you can perform a trick which is

something as follows −

if(FALSE)

{

 "This is a demo for multi-line comments and it should be put inside either a

single OR double quote"

}

myString <- "Hello, SAQ!"

print (myString)

[1] "Hello, SAQ!"

- Though above comments will be executed by R interpreter, they will not

interfere with your actual program.

- You should put such comments inside, either single or double quote

Fundamentals of R Programming Unit – II

O.S. ABDUL QADIR M. IBRAMSHA

7

Datatypes
 In contrast to other programming languages like C and java in R, the variables are

not declared as some data type.

 The variables are assigned with R-Objects and the data type of the R-object

becomes the data type of the variable.

 There are many types of R-objects.

 The frequently used ones are

1. Vectors

2. Lists

3. Matrices

4. Arrays

5. Factors

6. Data Frames

The simplest of these objects is the vector object and there are six data types of these

atomic vectors, also termed as six classes of vectors.

S. No Data Type Example Verify

1 Logical TRUE, FALSE

v <- TRUE

print(class(v))

OUTPUT

[1] "logical"

2 Numeric 12.3, 5, 999

v <- 23.5

print(class(v))

OUTPUT

[1] "numeric"

3 Integer 2L, 34L, 0L

v <- 2L

print(class(v))

OUTPUT

[1] "integer"

4 Complex 3 + 2i

v <- 2+5i

print(class(v))

OUTPUT

[1] "complex"

5 Character
'a' , '"good", "TRUE",

'23.4'

v <- "TRUE"

print(class(v))

OUTPUT

[1] "character"

6 Raw
"Hello" is stored as

48 65 6c 6c 6f

v <- charToRaw("Hello")

print(class(v))

OUTPUT

[1] "raw"

In R programming, the very basic data types are the R-objects called vectors which

hold elements of different classes.

Fundamentals of R Programming Unit – II

O.S. ABDUL QADIR M. IBRAMSHA

8

1. Vectors

When you want to create vector with more than one element, you should use c()

function which means to combine the elements into a vector.

Create a vector.

color <- c('red','green',"yellow")

print(color)

Get the class of the vector.

print(class(color))

OUTPUT

[1] "red" "green" "yellow"

[1] "character"

2. Lists

A list is an R-object which can contain many different types of elements inside it

like vectors, functions and even another list inside it.

Create a list.

list1 <- list(c(2,5,3),21.3,sin)

Print the list.

print(list1)

OUTPUT

[[1]]

[1] 2 5 3

[[2]]

[1] 21.3

[[3]]

function (x) .Primitive("sin")

3. Matrices

A matrix is a two-dimensional rectangular data set. It can be created using a vector

input to the matrix function.

Create a matrix.

M = matrix(c('a','a','b','c','b','a'), nrow = 2, ncol = 3, byrow = TRUE)

print(M)

OUTPUT

 [,1] [,2] [,3]

[1,] "a" "a" "b"

[2,] "c" "b" "a"

4. Arrays

 While matrices are confined to two dimensions, arrays can be of any number

of dimensions.

Fundamentals of R Programming Unit – II

O.S. ABDUL QADIR M. IBRAMSHA

9

 The array function takes a dim attribute which creates the required number of

dimension.

 In the below example we create an array with two elements which are 3x3

matrices each.

Create an array.

a <- array(c('green','yellow'),dim = c(3,3,2))

print(a)

OUTPUT

, , 1

 [,1] [,2] [,3]

[1,] "green" "yellow" "green"

[2,] "yellow" "green" "yellow"

[3,] "green" "yellow" "green"

, , 2

 [,1] [,2] [,3]

[1,] "yellow" "green" "yellow"

[2,] "green" "yellow" "green"

[3,] "yellow" "green" "yellow"

5. Factors

 Factors are the r-objects which are created using a vector.

 It stores the vector along with the distinct values in the vector as labels.

 The labels are always character irrespective of whether it is numeric or

character or Boolean etc. in the input vector. They are useful in statistical

modelling.

 Factors are created using the factor() function. The nlevels functions gives the

count of levels.

Create a vector.

apple_colors <- c('green','green','yellow','red','red','red','green')

Create a factor object.

factor_apple <- factor(apple_colors)

Print the factor.

print(factor_apple)

print(nlevels(factor_apple))

OUTPUT

[1] green green yellow red red red green

Levels: green red yellow

[1] 3

Fundamentals of R Programming Unit – II

O.S. ABDUL QADIR M. IBRAMSHA

10

6. Data Frames

 Data frames are tabular data objects. Unlike a matrix, here each column can

contain different modes of data. The first column can be numeric while the

second column can be character and third column can be logical.

 It is a list of vectors of equal length.

 Data Frames are created using the data.frame() function.

Create the data frame.

 BMI <- data.frame(

 gender = c("Male", "Male","Female"),

 height = c(152, 171.5, 165),

 weight = c(81,93, 78),

 Age = c(46,28,16)

)

print(BMI)

OUTPUT

 gender height weight Age

1 Male 152.0 81 46

2 Male 171.5 93 28

3 Female 165.0 78 16

Variable
 A variable provides us with named storage that our programs can manipulate.

 A variable in R can store an atomic vector, group of atomic vectors or a

combination of many Robjects.

 A variable

1. Valid – Has letters, numbers, underscore and dot.

2. Invalid

a. Starts with a number or an underscore (_).

b. The starting dot is followed by a number.

c. Using special characters other than dot(.) and underscore(_).

Variable Name

Example
Validity

Variable Name

Example
Validity

var_name2. Valid

var_name% Invalid

.var_name, Valid 2var_name

.2var_name
Invalid

var.name Valid

 _var_name Invalid

Variable Assignment

 The variables can be assigned values using leftward, rightward and equal to

operator. The values of the variables can be printed using print() or cat() function.

 The cat() function combines multiple items into a continuous print output.

Assignment using equal operator.

var.1 = c(0,1,2,3)

Fundamentals of R Programming Unit – II

O.S. ABDUL QADIR M. IBRAMSHA

11

Assignment using leftward operator.

var.2 <- c("SAQ","MIS")

Assignment using rightward operator.

c(TRUE,1) -> var.3

print(var.1)

cat ("var.1 is ", var.1 ,"\n")

cat ("var.2 is ", var.2 ,"\n")

cat ("var.3 is ", var.3 ,"\n")

OUTPUT

[1] 0 1 2 3

var.1 is 0 1 2 3

var.2 is SAQ MIS

var.3 is 1 1

 Note − The vector c(TRUE,1) has a mix of logical and numeric class.

 So logical class is coerced to numeric class making TRUE as 1.

Data Type of a Variable

In R, a variable itself is not declared of any data type, rather it gets the data type of the

R - object assigned to it.

So R is called a dynamically typed language, which means that we can change a

variable’s data type of the same variable again and again when using it in a program.

var_x <- "Hello"

cat("The class of var_x is ",class(var_x),"\n")

var_x <- 34.5

cat(" Now the class of var_x is ",class(var_x),"\n")

var_x <- 27L

cat(" Next the class of var_x becomes ",class(var_x),"\n")

OUTPUT

The class of var_x is character

 Now the class of var_x is numeric

 Next the class of var_x becomes integer

Finding Variables

 To know all the variables currently available in the workspace we use ls() function.

 Also the ls() function can use patterns to match the variable names.

print(ls())

OUTPUT

[1] "my var" "my_new_var" "my_var" "var.1"

[5] "var.2" "var.3" "var.name" "var_name2."

[9] "var_x" "varname"

Fundamentals of R Programming Unit – II

O.S. ABDUL QADIR M. IBRAMSHA

12

Note − It is a sample output depending on what variables are declared in your

environment.

 The ls() function can use patterns to match the variable names.

List the variables starting with the pattern "var".

print(ls(pattern = "var"))

OUTPUT

[1] "my var" "my_new_var" "my_var" "var.1"

[5] "var.2" "var.3" "var.name" "var_name2."

[9] "var_x" "varname"

- The variables starting with dot(.) are hidden, they can be listed using

"all.names = TRUE" argument to ls() function.

print(ls(all.name = TRUE))

OUTPUT

[1] ".cars" ".Random.seed" ".var_name" ".varname" ".varname2"

[6] "my var" "my_new_var" "my_var" "var.1" "var.2"

[11]"var.3" "var.name" "var_name2." "var_x"

Deleting Variables

 Variables can be deleted by using the rm() function.

 Below we delete the variable var.3.

 On printing the value of the variable error is thrown.

rm(var.3)

print(var.3)

OUTPUT

[1] "var.3"

Error in print(var.3) : object 'var.3' not found

All the variables can be deleted by using the rm() and ls() function together.

rm(list = ls())

print(ls())

OUTPUT

character(0)

Operators

 An operator is a symbol that tells the compiler to perform specific mathematical or

logical manipulations. R language is rich in built-in operators.

 Types of Operators

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Assignment Operators

5. Miscellaneous Operators

Fundamentals of R Programming Unit – II

O.S. ABDUL QADIR M. IBRAMSHA

13

Arithmetic Operators

Following table shows the arithmetic operators supported by R language.

The operators act on each element of the vector.

Operator Description Example

+ Adds two vectors

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v+t)

OUTPUT

[1] 10.0 8.5

10.0

− Subtracts second vector from the first

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v-t)

OUTPUT

[1] -6.0 2.5 2.0

* Multiplies both vectors

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v*t)

OUTPUT

[1] 16.0 16.5

24.0

/ Divide the first vector with the second

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v/t)

OUTPUT

[1] 0.250000

1.833333

1.500000

%%
Give the remainder of the first vector with

the second

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v%%t)

OUTPUT

[1] 2.0 2.5 2.0

%/%
The result of division of first vector with

second (quotient)

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v%/%t)

OUTPUT

[1] 0 1 1

^
The first vector raised to the exponent of

second vector

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v^t)

OUTPUT

[1] 256.000

166.375

1296.000

Relational Operators

 Following table shows the relational operators supported by R language.

 Each element of 1ST vector is compared with the corresponding element of 2ND

vector.

 The result of comparison is a Boolean value.

Operator Description Example

>

Checks if each element of the first

vector is greater than the

corresponding element of the second

vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v>t)

OUTPUT

[1] FALSE

TRUE FALSE

FALSE

<

Checks if each element of the first

vector is less than the corresponding

element of the second vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v < t)

OUTPUT

[1] TRUE

FALSE TRUE

FALSE

Fundamentals of R Programming Unit – II

O.S. ABDUL QADIR M. IBRAMSHA

14

Operator Description Example

==

Checks if each element of the first

vector is equal to the corresponding

element of the second vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v == t)

OUTPUT

[1] FALSE

FALSE FALSE

TRUE

<=

Checks if each element of the first

vector is less than or equal to the

corresponding element of the second

vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v<=t)

OUTPUT

[1] TRUE

FALSE TRUE

TRUE

>=

Checks if each element of the first

vector is greater than or equal to the

corresponding element of the second

vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v>=t)

OUTPUT

[1] FALSE

TRUE FALSE

TRUE

!=

Checks if each element of the first

vector is unequal to the corresponding

element of the second vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v!=t)

OUTPUT

[1] TRUE

TRUE TRUE

FALSE

Logical Operators

 Following table shows the logical operators supported by R language.

 It is applicable only to vectors of type logical, numeric or complex.

 All numbers greater than 1 are considered as logical value TRUE.

 Each element of 1ST vector is compared with the corresponding element of 2ND

vector.

 The result of comparison is a Boolean value.

Operator Description Example

&

It is called Element-wise Logical

AND operator.

It combines each element of 1ST

vector with the corresponding

element of the 2ND vector and gives a

output TRUE if both the elements

are TRUE.

v <- c(3,1,TRUE,2+3i)

t <- c(4,1,FALSE,2+3i)

print(v&t)

OUTPUT

[1] TRUE

TRUE FALSE

TRUE

|

It is called Element-wise Logical OR

operator.

It combines each element of 1ST

vector with corresponding element

of 2ND vector and gives an output

TRUE if one the elements is TRUE.

v <- c(3,0,TRUE,2+2i)

t <- c(4,0,FALSE,2+3i)

print(v|t)

OUTPUT

[1] TRUE

FALSE TRUE

TRUE

!

It is called Logical NOT operator.

Takes each element of the vector and

gives the opposite logical value.

v <- c(3,0,TRUE,2+2i)

print(!v)

OUTPUT

[1] FALSE

TRUE FALSE

FALSE

Fundamentals of R Programming Unit – II

O.S. ABDUL QADIR M. IBRAMSHA

15

The logical operator considers only the first element and give single element as output.

Operator Description Example

&&

Called Logical AND operator.

Takes first element of both the

vectors and gives the TRUE only if

both are TRUE.

v <- c(3,0,TRUE,2+2i)

t <- c(1,3,TRUE,2+3i)

print(v&&t)

OUTPUT

[1] TRUE

||

Called Logical OR operator.

Takes first element of both the

vectors and gives the TRUE if one

of them is TRUE.

v <- c(0,0,TRUE,2+2i)

t <- c(0,3,TRUE,2+3i)

print(v||t)

OUTPUT

[1] FALSE

Assignment Operators

These operators are used to assign values to vectors.

Operator Description Example

<−

=

<<−

Called Left

Assignment

v1 <- c(3,1,TRUE,2+3i)

v2 <<- c(3,1,TRUE,2+3i)

print(v1)

print(v2)

OUTPUT

[1] 3+0i 1+0i 1+0i 2+3i

[1] 3+0i 1+0i 1+0i 2+3i

->

(or)

->>

Called Right

Assignment

c(3,1,TRUE,2+3i) -> v1

c(3,1,TRUE,2+3i) ->> v2

print(v1)

print(v2)

OUTPUT

[1] 3+0i 1+0i 1+0i 2+3i

[1] 3+0i 1+0i 1+0i 2+3i

Miscellaneous Operators

These operators are used to for specific purpose and not general mathematical or

logical computation.

Operator Description Example

:

Colon operator. It creates the series

of numbers in sequence for a

vector.

v <- 2:8

print(v)

OUTPUT

[1] 2 3 4 5 6 7 8

%in%
This operator is used to identify if

an element belongs to a vector.

v1 <- 8

v2 <- 12

t <- 1:10

print(v1 %in% t)

print(v2 %in% t)

OUTPUT

[1] TRUE

[1] FALSE

%*%
This operator is used to multiply a

matrix with its transpose.

M = matrix(

c(2,6,5,1,10,4),

nrow = 2,

ncol = 3,

byrow = TRUE)

t = M %*% t(M)

print(t)

OUTPUT

 [,1] [,2]

[1,] 65 82

[2,] 82 117

Fundamentals of R Programming Unit – III

O.S. ABDUL QADIR M. IBRAMSHA

16

Decision Making

 Decision making specifies one or more conditions to be evaluated or tested by the

program, along with a statement or statements to be executed if the condition is

true, and optionally, other statements to be executed if the condition is false.

 R provides the following types of decision making statements.

1. if statement

2. if...else statement

3. The if...else if...else Statement

4. switch statement

1. if statement

An if statement consists of a Boolean expression followed by one or more

statements.

Syntax

if(boolean_expression)

{

// statement(s) will execute if the Boolean expression is true.

}

- If the expression is true, then ‘if block’ statement will be executed.

- Otherwise, the first set of code after the end of ‘if ‘statement will be

executed.

Flow Diagram

Example

x <- 30L

if(is.integer(x))

{

print("X is an Integer")

}

OUTPUT

[1] "X is an Integer"

Fundamentals of R Programming Unit – III

O.S. ABDUL QADIR M. IBRAMSHA

17

2. if...else statement

An ‘if’ statement can be followed by an optional else statement which executes

when the Boolean expression is false.

Syntax

if(boolean_expression)

{

// statement(s) will execute if the boolean expression is true.

}

else

{

// statement(s) will execute if the boolean expression is false.

}

- If the Boolean expression evaluates to be true, then the ‘if’ block of

code will be executed, otherwise else block of code will be executed.

Flow Diagram

Example

x <- c("what","is","truth")

if("Truth" %in% x)

{

print("Truth is found")

}

else

{

print("Truth is not found")

}

OUTPUT

[1] "Truth is not found"

- Here "Truth" and "truth" are two different strings.

Fundamentals of R Programming Unit – III

O.S. ABDUL QADIR M. IBRAMSHA

18

3. The if...else if...else Statement

 An if statement can be followed by an optional else if...else statement, which

is very useful to test various conditions using single if...else if statement.

 When using if, else if, else statements there are few points to keep in mind.

 An if can have zero or one else and it must come after any else if's.

 An if can have zero to many else if's and they must come before the

else.

 Once an else if succeeds, none of the remaining else if's or else's will

be tested.

Syntax

if(boolean_expression 1)

{

// Executes when the boolean expression 1 is true.

}

else if(boolean_expression 2)

{

// Executes when the boolean expression 2 is true.

}

else if(boolean_expression 3)

{

// Executes when the boolean expression 3 is true.

}

else

{

// executes when none of the above condition is true.

}

Example

x <- c("what","is","truth")

if("Truth" %in% x)

{

print("Truth is found the first time")

}

else if ("truth" %in% x)

{

print("truth is found the second time")

}

else

{

print("No truth found")

}

OUTPUT

[1] "truth is found the second time"

Fundamentals of R Programming Unit – III

O.S. ABDUL QADIR M. IBRAMSHA

19

4. switch statement

 A switch statement allows a variable to be tested for equality against a list

of values.

 Each value is called a case, and the variable being switched on is checked

for each case.

Syntax

switch(

expression,

case1,

case2,

case3

....)

- The following are the rules apply to a switch statement

 If the value of expression is not a character string it is coerced to integer.

 You can have any number of case statements within a switch. Each case

is followed by the value to be compared to and a colon.

 If the value of the integer is between 1 and nargs()−1 (The max number

of arguments) then the corresponding element of case condition is

evaluated and the result returned.

 If expression evaluates to a character string then that string is matched

(exactly) to the names of the elements.

 If there is more than one match, the first matching element is returned.

 No Default argument is available.

 In the case of no match, if there is a unnamed element of ... its value is

returned. (If there is more than one such argument an error is returned.)

Flow Diagram

Fundamentals of R Programming Unit – III

O.S. ABDUL QADIR M. IBRAMSHA

20

Example

x <- switch(

 3,

"first",

 "second",

 "third",

 "fourth")

print(x)

OUTPUT

[1] "third"

Loops
 In general, statements are executed sequentially. There may be a situation when

you need to execute a block of code several number of times.

 The 1ST statement in a function is executed first, followed by the second, and so on.

 A loop statement allows us to execute a statement or group of statements multiple

times.

 R programming language provides the following kinds of loop to handle looping

requirements.

1. repeat loop

2. while loop

3. for loop

1. repeat loop

Executes a sequence of statements multiple times and abbreviates the code that

manages the loop variable.

Syntax

repeat

{ commands

if(condition)

{break}

}

Flow Diagram

Fundamentals of R Programming Unit – III

O.S. ABDUL QADIR M. IBRAMSHA

21

Example

v <- c("Hello","loop")

cnt <- 2

repeat

{

print(v)

cnt <- cnt+1

if(cnt > 5)

{

break

}

}

OUTPUT

[1] "Hello" "loop"

[1] "Hello" "loop"

[1] "Hello" "loop"

[1] "Hello" "loop"

2. While loop

Repeats a statement or group of statements while a given condition is true.

It tests the condition before executing the loop body.

Syntax

while (test_expression)

{

statement

}

Flow Diagram

Fundamentals of R Programming Unit – III

O.S. ABDUL QADIR M. IBRAMSHA

22

- Here key point of the while loop is that the loop might not ever run.

- When the condition is tested and the result is false, the loop body will be

skipped and the first statement after the while loop will be executed.

Example

v <- c("Hello","while loop")

cnt <- 2

while (cnt < 7)

{

print(v)

cnt = cnt + 1

}

OUTPUT

[1] "Hello" "while loop"

[1] "Hello" "while loop"

[1] "Hello" "while loop"

[1] "Hello" "while loop"

[1] "Hello" "while loop"

3. For loop

A For loop is a repetition control structure that allows you to efficiently write

a loop that needs to execute a specific number of times.

Like a while statement, except that it tests the condition at the end of the loop

body.

Syntax

for (value in vector)

{

statements

}

Flow Diagram

Fundamentals of R Programming Unit – III

O.S. ABDUL QADIR M. IBRAMSHA

23

- R’s for loops are particularly flexible in that they are not limited to integers,

or even numbers in the input.

- We can pass character vectors, logical vectors, lists or expressions.

Example

v <- LETTERS[1:4]

for (i in v)

{

print(i)

}

OUTPUT

[1] "A"

[1] "B"

[1] "C"

[1] "D"

Loop Control Statements

 They change execution from its normal sequence. When execution leaves a scope,

all automatic objects that were created in that scope are destroyed.

 R supports the following control statements.

1. break statement

2. Next statement

1. break statement

 Terminates the loop statement and transfers execution to the statement

immediately following the loop.

 The break statement has the following two usages

1. When the break statement is encountered inside a loop, the loop is

immediately terminated and program control resumes at the next

statement following the loop.

2. It can be used to terminate a case in the switch statement.

Syntax

break

Flow Diagram

Fundamentals of R Programming Unit – III

O.S. ABDUL QADIR M. IBRAMSHA

24

Example

v <- c("Hello","loop")

cnt <- 2

repeat

{

print(v)

cnt <- cnt + 1

if(cnt > 4)

{

break

}

}

OUTPUT

[1] "Hello" "loop"

[1] "Hello" "loop"

[1] "Hello" "loop"

2. Next statement

The next statement is useful when we want to skip the current iteration of

a loop without terminating it. On encountering next, the R parser skips

further evaluation and starts next iteration of the loop.

Syntax

next

Flow Diagram

Fundamentals of R Programming Unit – III

O.S. ABDUL QADIR M. IBRAMSHA

25

Example

v <- LETTERS[1:6]

for (i in v)

{

if (i == "D")

{

next

}

print(i)

}

OUTPUT

[1] "A"

[1] "B"

[1] "C"

[1] "E"

[1] "F"

Fundamentals of R Programming Unit – IV

O.S. ABDUL QADIR M. IBRAMSHA

26

Functions
 A function is a set of statements organized together to perform a specific task.

 R has in-built functions and the user can create their own functions.

 In R, a function is an object so the R interpreter is able to pass control to the function,

along with arguments that may be necessary for the function to accomplish the

actions.

 The function in turn performs its task and returns control to the interpreter as well

as any result which may be stored in other objects.

Definition

- An R function is created by using the keyword function.

- Syntax

function_name <- function(arg_1, arg_2, ...)

{

Function body

}

Components

The different parts of a function are −

1. Function Name − this is the actual name of the function. It is stored in R

environment as an object with this name.

2. Arguments − an argument is a placeholder. When a function is invoked, you

pass a value to the argument. Arguments are optional; i.e., a function may

contain no arguments. Also arguments can have default values.

3. Function Body – it contains a collection of statements that defines what the

function does.

4. Return Value – it is the last expression in the function body to be evaluated.

Built-in Function

- Simple examples of in-built functions are seq(), mean(), max(), sum(x) and

paste(...) etc.

- They are directly called by user written programs.

Create a sequence of numbers from 32 to 44.

print(seq (32,44))

Find mean of numbers from 25 to 82.

print(mean (25:82))

Find sum of numbers from 41 to 68.

print(sum (41:68))

OUTPUT

[1] 32 33 34 35 36 37 38 39 40 41 42 43 44

[1] 53.5

[1] 1526

Fundamentals of R Programming Unit – IV

O.S. ABDUL QADIR M. IBRAMSHA

27

User-defined Function

- They are specific to what a user wants and once created they can be used

like the built-in functions.

1. # Create a function to print squares of numbers in sequence.

new.function <- function(a)

{

for(i in 1:a)

{

b <- i^2

print(b)

}

}

Calling a function with an argument

new.function(4)

OUTPUT

[1] 1

[1] 4

[1] 9

[1] 16

2. # Create a function without an argument

new.function <- function()

{

for(i in 2:4)

{

print(i^2)

}

}

 # Calling a function without an argument

new.function()

OUTPUT

[1] 4

[1] 9

[1] 16

3. Calling a Function with Argument Values (by position and by name)

The arguments to a function call can be supplied as defined or in a

different sequence but assigned to the names of the arguments

Create a function with arguments.

new.function <- function(a,b,c)

{

result <- a * b + c

print(result)

}

Fundamentals of R Programming Unit – IV

O.S. ABDUL QADIR M. IBRAMSHA

28

Call the function by position of arguments

new.function (5, 3, 11)

Call the function by names of the arguments

new.function (a = 11, b = 5, c = 3)

OUTPUT

[1] 26

[1] 58

4. Calling a Function with Default Argument

We can define the value of the arguments in the function definition and

call the function without supplying any argument to get the default

result. But we can also call such functions by supplying new values of

the argument and get non default result.

Create a function with arguments

new.function <- function (a = 3, b = 6)

{

result <- a * b

print(result)

}

Call the function without giving any argument

new.function ()

Call the function with giving new values of the argument.

new.function (9, 5)

OUTPUT

[1] 18

[1] 45

5. Lazy Evaluation of Function

Arguments to functions are evaluated lazily, which means so they are

evaluated only when needed by the function body.

Create a function with arguments.

new.function <- function(a, b)

{

print(a^2)

print(a)

print(b)

}

Evaluate the function without supplying one of the arguments.

new.function(6)

OUTPUT

[1] 36

[1] 6

Error in print (b): argument "b" is missing, with no default

Fundamentals of R Programming Unit – IV

O.S. ABDUL QADIR M. IBRAMSHA

29

String
 Any value written within a pair of single quote or double quotes is treated as a

string. Internally R stores every string within double quotes, even when you create

them with single quote.

Rules Applied in String Construction

 The quotes at the beginning and end of a string should be double quotes or both

single quote. They cannot be mixed.

 Double quotes can be inserted into a string starting and ending with single quote.

 Single quote can be inserted into a string starting and ending with double quotes.

 Double quotes cannot be inserted into a string starting and ending with double

quotes.

 Single quote cannot be inserted into a string starting and ending with single quote.

Examples of Valid Strings

1. a <- 'Start and end with single quote'

print(a)

2. b <- "Start and end with double quotes"

print(b)

3. c <- "single quote ' in between double quotes"

print(c)

4. d <- 'Double quotes " in between single quote'

print(d)

OUTPUT

[1] "Start and end with single quote"

[1] "Start and end with double quotes"

[1] "single quote ' in between double quote"

[1] "Double quote \" in between single quote"

Examples of Invalid Strings

1. e <- 'Mixed quotes"

print(e)

2. f <- 'Single quote ' inside single quote'

print(f)

3. g <- "Double quotes " inside double quotes"

print(g)

When we run the script it fails giving below results.

Error: unexpected symbol in:

4. "print(e)

f <- 'Single"

Execution halted

Fundamentals of R Programming Unit – IV

O.S. ABDUL QADIR M. IBRAMSHA

30

String Manipulation

1. Concatenating Strings - paste() function

Many strings in R are combined using the paste() function. It can take any

number of arguments to be combined together.

Syntax

paste(..., sep = " ", collapse = NULL)

- ... represents any number of arguments to be combined.

- sep represents any separator between the arguments. It is optional.

- collapse is used to eliminate the space in between two strings. But not the

space within two words of one string.

Example

a <- "Hello"

b <- 'How'

c <- "are you? "

print (paste(a,b,c))

print (paste(a,b,c, sep = "-"))

print (paste(a,b,c, sep = "", collapse = ""))

OUTPUT

[1] "Hello How are you? "

[1] "Hello-How-are you? "

[1] "HelloHoware you? "

2. Formatting numbers & strings - format() function

Numbers and strings can be formatted format() function.

Syntax

format (x, digits, nsmall, scientific, width, justify = c("left", "right",

 "centre", "none"))

- x is the vector input.

- digits is the total number of digits displayed.

- nsmall is the minimum number of digits to the right of the decimal point.

- scientific is set to TRUE to display scientific notation.

- width indicates the minimum width to be displayed by padding blanks in

the beginning.

- i is the display of the string to left, right or center.

Example

Total number of digits displayed. Last digit rounded off.

result <- format(23.123456789, digits = 9)

print(result)

Display numbers in scientific notation.

result <- format(c(6, 13.14521), scientific = TRUE)

print(result)

The minimum number of digits to the right of the decimal point.

result <- format(23.47, nsmall = 5)

print(result)

Fundamentals of R Programming Unit – IV

O.S. ABDUL QADIR M. IBRAMSHA

31

Format treats everything as a string.

result <- format(6)

print(result)

Numbers are padded with blank in the beginning for width.

result <- format(13.7, width = 6)

print(result)

Left justify strings.

result <- format("Hello", width = 8, justify = "l")

print(result)

Justfy string with center.

result <- format("Hello", width = 8, justify = "c")

print(result)

OUTPUT

[1] "23.1234568"

[1] "6.000000e+00" "1.314521e+01"

[1] "23.47000"

[1] "6"

[1] " 13.7"

[1] "Hello "

[1] " Hello "

3. Counting number of characters in a string - nchar() function

This function counts the number of characters including spaces in a string.

Syntax

nchar(x)

- x is the vector input.

Example

 result <- nchar("Ibramsha")

print(result)

OUTPUT

[1] 8

4. Changing the case - toupper() & tolower() functions

These functions change the case of characters of a string.

Syntax

toupper(x), tolower(x)

- x is the vector input.

Example

1. result <- toupper("saq")

print(result)

2. result <- tolower("MIS")

print(result)

OUTPUT

[1] "SAQ"

[1] "mis"

Fundamentals of R Programming Unit – IV

O.S. ABDUL QADIR M. IBRAMSHA

32

5. Extracting parts of a string - substring() function

This function extracts parts of a String.

Syntax

substring (x, first, last)

- x is the character vector input.

- first is the position of the first character to be extracted.

- last is the position of the last character to be extracted.

Example

Extract characters from 5th to 7th position.

result <- substring("Extract", 5, 7)

print(result)

OUTPUT

[1] "act"

Vector
Vectors are the most basic R data objects and there are six types of atomic vectors.

They are logical, integer, double, complex, character and raw.

Vector Creation

Single Element Vector

 Even when you write just one value in R, it becomes a vector of length 1 and

belongs to one of the above vector types.

Atomic vector of type character.

print("abc");

Atomic vector of type double.

print(12.5)

Atomic vector of type integer.

print(63L)

Atomic vector of type logical.

print(TRUE)

Atomic vector of type complex.

print(2+3i)

Atomic vector of type raw.

print(charToRaw('hello'))

OUTPUT

[1] "abc"

[1] 12.5

[1] 63

[1] TRUE

[1] 2+3i

[1] 68 65 6c 6c 6f

Fundamentals of R Programming Unit – IV

O.S. ABDUL QADIR M. IBRAMSHA

33

Multiple Elements Vector

1. Using colon operator with numeric data

Creating a sequence from 5 to 13.

v <- 5:13

print(v)

Creating a sequence from 6.6 to 12.6.

v <- 6.6:12.6

print(v)

If the final element specified does not belong to the sequence then it is

discarded.

v <- 3.8:11.4

print(v)

OUTPUT

[1] 5 6 7 8 9 10 11 12 13

[1] 6.6 7.6 8.6 9.6 10.6 11.6 12.6

[1] 3.8 4.8 5.8 6.8 7.8 8.8 9.8 10.8

2. Using sequence (Seq.) operator

Create vector with elements from 5 to 9 incrementing by 0.4.

print(seq(5, 9, by = 0.4))

OUTPUT

[1] 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8 8.2 8.6 9.0

3. Using the c() function

The non-character values are coerced to character type if one of the elements is

a character.

The logical and numeric values are converted to characters.

s <- c('apple','red',5,TRUE)

print(s)

OUTPUT

[1] "apple" "red" "5" "TRUE"

Accessing Vector Elements

 Elements of a Vector are accessed using indexing.

 The [] brackets are used for indexing.

 Indexing starts with position 1. Giving a negative value in the index drops that

element from result.

 TRUE, FALSE or 0 and 1 can also be used for indexing.

Accessing vector elements using position.

t <- c("Sun","Mon","Tue","Wed","Thurs","Fri","Sat")

u <- t[c(2,3,6)]

print(u)

Fundamentals of R Programming Unit – IV

O.S. ABDUL QADIR M. IBRAMSHA

34

Accessing vector elements using logical indexing.

v <- t[c(TRUE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE)]

print(v)

Accessing vector elements using negative indexing.

x <- t[c(-2,-5)]

print(x)

Accessing vector elements using 0/1 indexing.

y <- t[c(0,0,0,0,0,0,1)]

print(y)

OUTPUT

[1] "Mon" "Tue" "Fri"

[1] "Sun" "Fri"

[1] "Sun" "Tue" "Wed" "Fri" "Sat"

[1] "Sun"

Vector Manipulation

1. Vector arithmetic

Two vectors of same length can be added, subtracted, multiplied or divided

giving the result as a vector output.

Create two vectors.

v1 <- c(3,8,4,5,0,11)

v2 <- c(4,11,0,8,1,2)

Vector addition.

add.result <- v1+v2

print(add.result)

Vector subtraction.

sub.result <- v1-v2

print(sub.result)

Vector multiplication.

multi.result <- v1*v2

print(multi.result)

Vector division.

divi.result <- v1/v2

print(divi.result)

OUTPUT

[1] 7 19 4 13 1 13

[1] -1 -3 4 -3 -1 9

[1] 12 88 0 40 0 22

[1] 0.7500000 0.7272727 Inf 0.6250000 0.0000000 5.5000000

2. Vector Element Recycling

If we apply arithmetic operations to two vectors of unequal length, then the

elements of the shorter vector are recycled to complete the operations.

v1 <- c(3,8,4,5,0,11)

v2 <- c(4,11) # V2 becomes c(4,11,4,11,4,11)

add.result <- v1+v2

print(add.result)

OUTPUT

[1] 7 19 8 16 4 22

Fundamentals of R Programming Unit – IV

O.S. ABDUL QADIR M. IBRAMSHA

35

3. Vector Element Sorting

Elements in a vector can be sorted using the sort() function.

v <- c(3,8,4,5,0,11, -9, 304)

Sort the elements of the vector.

sort.result <- sort(v)

print(sort.result)

Sort the elements in the reverse order.

revsort.result <- sort(v, decreasing = TRUE)

print(revsort.result)

Sorting character vectors.

v <- c("Red","Blue","yellow","violet")

sort.result <- sort(v)

print(sort.result)

Sorting character vectors in reverse order.

revsort.result <- sort(v, decreasing = TRUE)

print(revsort.result)

OUTPUT

[1] -9 0 3 4 5 8 11 304

[1] 304 11 8 5 4 3 0 -9

[1] "Blue" "Red" "violet" "yellow"

[1] "yellow" "violet" "Red" "Blue"

Lists

 Lists are the R objects which contain elements of different types like − numbers,

strings, vectors and another list inside it.

 A list can also contain a matrix or a function as its elements.

 List is created using list() function.

Creating a List

Create a list containing strings, numbers, vectors and a logical values.

list_data <- list("Red", c(21,32,11), TRUE, 51.23, 119.1)

print(list_data)

OUTPUT

[[1]]

[1] "Red"

[[2]]

[1] 21 32 11

[[3]]

[1] TRUE

[[4]]

[1] 51.23

Fundamentals of R Programming Unit – IV

O.S. ABDUL QADIR M. IBRAMSHA

36

Naming List Elements

The list elements can be given names and they can be accessed using these names.

Create a list containing a vector, a matrix and a list.

list_data <- list(c("Jan","Feb","Mar"), matrix(c(3,9,5,1,-2,8), nrow = 2),

list("green",12.3))

Give names to the elements in the list.

names(list_data) <- c("1st Quarter", "A_Matrix", "A Inner list")

Show the list.

print(list_data)

OUTPUT

$`1st_Quarter`

[1] "Jan" "Feb" "Mar"

$A_Matrix

 [,1] [,2] [,3]

[1,] 3 5 -2

[2,] 9 1 8

$A_Inner_list

$A_Inner_list[[1]]

[1] "green"

$A_Inner_list[[2]]

[1] 12.3

Accessing List Elements

Elements of the list can be accessed by the index of the element in the list. In case of

named lists it can also be accessed using the names.

We continue to use the list in the above example −

Create a list containing a vector, a matrix and a list.

list_data <- list(c("Jan","Feb","Mar"), matrix(c(3,9,5,1,-2,8), nrow = 2),

list("green",12.3))

Give names to the elements in the list.

names(list_data) <- c("1st Quarter", "A_Matrix", "A Inner list")

Access the first element of the list.

print(list_data[1])

Access the thrid element. As it is also a list, all its elements will be printed.

print(list_data[3])

Access the list element using the name of the element.

print(list_data$A_Matrix)

Fundamentals of R Programming Unit – IV

O.S. ABDUL QADIR M. IBRAMSHA

37

OUTPUT

$`1st_Quarter`

[1] "Jan" "Feb" "Mar"

$A_Inner_list

$A_Inner_list[[1]]

[1] "green"

$A_Inner_list[[2]]

[1] 12.3

 [,1] [,2] [,3]

[1,] 3 5 -2

[2,] 9 1 8

Manipulating List Elements

We can add and delete elements only at the end of a list.

But we can update any element.

Create a list containing a vector, a matrix and a list.

list_data <- list(c("Jan","Feb","Mar"), matrix(c(3,9,5,1,-2,8), nrow = 2),

list("green",12.3))

Give names to the elements in the list.

names(list_data) <- c("1st Quarter", "A_Matrix", "A Inner list")

Add element at the end of the list.

list_data[4] <- "New element"

print(list_data[4])

Remove the last element.

list_data[4] <- NULL

Print the 4th Element.

print(list_data[4])

Update the 3rd Element.

list_data[3] <- "updated element"

print(list_data[3])

OUTPUT

[[1]]

[1] "New element"

$<NA>

NULL

$`A Inner list`

[1] "updated element"

Fundamentals of R Programming Unit – IV

O.S. ABDUL QADIR M. IBRAMSHA

38

Merging Lists

You can merge many lists into one list by placing all the lists inside one list() function.

Create two lists.

list1 <- list(1,2,3)

list2 <- list("Sun","Mon","Tue")

Merge the two lists.

merged.list <- c(list1,list2)

Print the merged list.

print(merged.list)

OUTPUT

[[1]]

[1] 1

[[2]]

[1] 2

[[3]]

[1] 3

[[4]]

[1] "Sun"

[[5]]

[1] "Mon"

[[6]]

[1] "Tue"

Converting List to Vector

A list can be converted to a vector so that the elements of the vector can be used for

manipulation. All the arithmetic operations on vectors can be applied after the list is

converted into vectors unlist() function. It takes the list as input and produces a vector.

Create lists.

list1 <- list(1:5)

print(list1)

list2 <-list(10:14)

print(list2)

Convert the lists to vectors.

v1 <- unlist(list1)

v2 <- unlist(list2)

print(v1)

print(v2)

Now add the vectors

result <- v1+v2

print(result)

OUTPUT

[[1]]

[1] 1 2 3 4 5

[[1]]

[1] 10 11 12 13 14

[1] 1 2 3 4 5

[1] 10 11 12 13 14

[1] 11 13 15 17 19

Fundamentals of R Programming Unit – V

O.S. ABDUL QADIR M. IBRAMSHA

39

Matrices
 Matrices are the R objects in which the elements are arranged in a two-dimensional

rectangular layout. They contain elements of the same atomic types.

 Though we can create a matrix containing only characters or only logical values,

they are not of much use. We use matrices containing numeric elements to be used

in mathematical calculations.

 A Matrix is created using the matrix() function.

Syntax

matrix(data, nrow, ncol, byrow, dimnames)

- data is the input vector which becomes the data elements of the matrix.

- nrow is the number of rows to be created.

- ncol is the number of columns to be created.

- byrow is a logical clue. If TRUE then the input vector elements are arranged

by row.

- dimname is the names assigned to the rows and columns.

Example

Create a matrix taking a vector of numbers as input.

Elements are arranged sequentially by row.

M <- matrix(c(3:14), nrow = 4, byrow = TRUE)

print(M)

Elements are arranged sequentially by column.

N <- matrix(c(3:14), nrow = 4, byrow = FALSE)

print(N)

Define the column and row names.

rownames = c("row1", "row2", "row3", "row4")

colnames = c("col1", "col2", "col3")

P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames,

colnames))

print(P)

OUTPUT

 [,1] [,2] [,3]

[1,] 3 4 5

[2,] 6 7 8

[3,] 9 10 11

[4,] 12 13 14

 [,1] [,2] [,3]

[1,] 3 7 11

[2,] 4 8 12

[3,] 5 9 13

[4,] 6 10 14

 col1 col2 col3

row1 3 4 5

row2 6 7 8

row3 9 10 11

row4 12 13 14

Fundamentals of R Programming Unit – V

O.S. ABDUL QADIR M. IBRAMSHA

40

Accessing Elements of a Matrix

Elements of a matrix can be accessed by using the column and row index of the

element. We consider the matrix P above to find the specific elements below.

Define the column and row names.

rownames = c("row1", "row2", "row3", "row4")

colnames = c("col1", "col2", "col3")

Create the matrix.

P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames,

colnames))

Access the element at 3rd column and 1st row.

print(P[1,3])

Access the element at 2nd column and 4th row.

print(P[4,2])

Access only the 2nd row.

print(P[2,])

Access only the 3rd column.

print(P[,3])

OUTPUT

[1] 5

[1] 13

col1 col2 col3

 6 7 8

row1 row2 row3 row4

 5 8 11 14

Matrix Computations

 Various mathematical operations are performed on the matrices using the R

operators. The result of the operation is also a matrix.

 The dimensions (number of rows and columns) should be same for the matrices

involved in the operation.

Matrix Addition & Subtraction

Create two 2x3 matrices.

matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow = 2)

print(matrix1)

matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow = 2)

print(matrix2)

Add the matrices.

result <- matrix1 + matrix2

cat("Result of addition","\n")

print(result)

Fundamentals of R Programming Unit – V

O.S. ABDUL QADIR M. IBRAMSHA

41

Subtract the matrices

result <- matrix1 - matrix2

cat("Result of subtraction","\n")

print(result)

OUTPUT

 [,1] [,2] [,3]

[1,] 3 -1 2

[2,] 9 4 6

 [,1] [,2] [,3]

[1,] 5 0 3

[2,] 2 9 4

Result of addition

 [,1] [,2] [,3]

[1,] 8 -1 5

[2,] 11 13 10

Result of subtraction

 [,1] [,2] [,3]

[1,] -2 -1 -1

[2,] 7 -5 2

Matrix Multiplication & Division

Create two 2x3 matrices.

matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow = 2)

print(matrix1)

matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow = 2)

print(matrix2)

Multiply the matrices.

result <- matrix1 * matrix2

cat("Result of multiplication","\n")

print(result)

Divide the matrices

result <- matrix1 / matrix2

cat("Result of division","\n")

print(result)

OUTPUT

 [,1] [,2] [,3]

[1,] 3 -1 2

[2,] 9 4 6

 [,1] [,2] [,3]

[1,] 5 0 3

[2,] 2 9 4

Result of multiplication

 [,1] [,2] [,3]

[1,] 15 0 6

[2,] 18 36 24

Result of division

 [,1] [,2] [,3]

[1,] 0.6 -Inf 0.6666667

[2,] 4.5 0.4444444 1.5000000

Arrays
 Arrays are the R data objects which can store data in more than two dimensions.

 For example − If we create an array of dimension (2, 3, 4) then it creates 4

rectangular matrices each with 2 rows and 3 columns. Arrays can store only data

type.

 An array is created using the array() function. It takes vectors as input and uses the

values in the dim parameter to create an array.

Fundamentals of R Programming Unit – V

O.S. ABDUL QADIR M. IBRAMSHA

42

Example

The following example creates an array of two 3x3 matrices each with 3 rows and 3

columns.

Create two vectors of different lengths.

vector1 <- c(5,9,3)

vector2 <- c(10,11,12,13,14,15)

Take these vectors as input to the array.

result <- array(c(vector1,vector2),dim = c(3,3,2))

print(result)

OUTPUT

, , 1

 [,1] [,2] [,3]

[1,] 5 10 13

[2,] 9 11 14

[3,] 3 12 15

, , 2

 [,1] [,2] [,3]

[1,] 5 10 13

[2,] 9 11 14

[3,] 3 12 15

Naming Columns and Rows

We can give names to the rows, columns and matrices in the array by using the

dimnames parameter.

Create two vectors of different lengths.

vector1 <- c(5,9,3)

vector2 <- c(10,11,12,13,14,15)

column.names <- c("COL1","COL2","COL3")

row.names <- c("ROW1","ROW2","ROW3")

matrix.names <- c("Matrix1","Matrix2")

Take these vectors as input to the array.

result <- array(c(vector1,vector2), dim = c(3,3,2),

 dimnames = list(row.names,column.names,matrix.names))

print(result)

OUTPUT

, , Matrix1

 COL1 COL2 COL3

ROW1 5 10 13

ROW2 9 11 14

ROW3 3 12 15

, , Matrix2

 COL1 COL2 COL3

ROW1 5 10 13

ROW2 9 11 14

ROW3 3 12 15

Fundamentals of R Programming Unit – V

O.S. ABDUL QADIR M. IBRAMSHA

43

Accessing Array Elements

Create two vectors of different lengths.

vector1 <- c(5,9,3)

vector2 <- c(10,11,12,13,14,15)

column.names <- c("COL1","COL2","COL3")

row.names <- c("ROW1","ROW2","ROW3")

matrix.names <- c("Matrix1","Matrix2")

Take these vectors as input to the array.

result <- array(c(vector1,vector2),dim = c(3,3,2),dimnames = list(row.names,

 column.names, matrix.names))

Print the third row of the second matrix of the array.

print(result[3,,2])

Print the element in the 1st row and 3rd column of the 1st matrix.

print(result[1,3,1])

Print the 2nd Matrix.

print(result[,,2])

OUTPUT

COL1 COL2 COL3

 3 12 15

[1] 13

 COL1 COL2 COL3

ROW1 5 10 13

ROW2 9 11 14

ROW3 3 12 15

Manipulating Array Elements

As array is made up matrices in multiple dimensions, the operations on elements of

array are carried out by accessing elements of the matrices.

Create two vectors of different lengths.

vector1 <- c(5,9,3)

vector2 <- c(10,11,12,13,14,15)

Take these vectors as input to the array.

array1 <- array(c(vector1,vector2),dim = c(3,3,2))

Create two vectors of different lengths.

vector3 <- c(9,1,0)

vector4 <- c(6,0,11,3,14,1,2,6,9)

array2 <- array(c(vector1,vector2),dim = c(3,3,2))

create matrices from these arrays.

matrix1 <- array1[,,2]

matrix2 <- array2[,,2]

Fundamentals of R Programming Unit – V

O.S. ABDUL QADIR M. IBRAMSHA

44

Add the matrices.

result <- matrix1+matrix2

print(result)

OUTPUT

 [,1] [,2] [,3]

[1,] 10 20 26

[2,] 18 22 28

[3,] 6 24 30

Calculations Across Array Elements

We can do calculations across the elements in an array using the apply() function.

Syntax

apply(x, margin, fun)

- x is an array.

- margin is the name of the data set used.

- fun is the function to be applied across the elements of the array.

Example

We use the apply() function below to calculate the sum of the elements

in the rows of an array across all the matrices.

Create two vectors of different lengths.

vector1 <- c(5,9,3)

vector2 <- c(10,11,12,13,14,15)

Take these vectors as input to the array.

new.array <- array(c(vector1,vector2),dim = c(3,3,2))

print(new.array)

Use apply to calculate the sum of the rows across all the matrices.

result <- apply(new.array, c(1), sum)

print(result)

OUTPUT

, , 1

 [,1] [,2] [,3]

[1,] 5 10 13

[2,] 9 11 14

[3,] 3 12 15

, , 2

 [,1] [,2] [,3]

[1,] 5 10 13

[2,] 9 11 14

[3,] 3 12 15

[1] 56 68 60

